Efficient Signcryption Schemes on Elliptic Curves

Yuliang Zheng, Monash University, Australia
Hideki Imai, University of Tokyo, Japan

http://www.pscit.monash.edu.au/~yuliang/
Points on an Elliptic Curve

- The points on an EC, together with the point at infinity, form an abelian group under “addition” defined by the “tangent and chord” method.
- The number of points on an elliptic curve C over $GF(p^m)$ is
 \[\#C = p^m + 1 - t, \quad \text{where} \quad |t| \leq 2\sqrt{p^m} \]
- t is called the trace of the curve

Curves to be Avoided

- super-singular curves whose traces satisfy
 \[t = \pm \sqrt{i \cdot p^m}, \]
 where $i = 0, 1, 2, 3$ or 4
 (Menezes, Okamoto & Vanstone, 93)
- curves over $GF(p)$ with trace 1, namely
 \[\#C = p \]
 (Satoh & Araki, & Smart, 97)
Signcryption on EC--
Public & Secret Parameters

- **Public to all**
 - C: an EC over GF(p^m),
 - q: a large prime
 - G: a point on C with order q
 - hash, KH, (E,D)

- **Alice’s keys**
 - v_a: secret key
 - P_a: public key
 - (note: P_a = v_a G)

- **Bob’s keys**
 - v_b: secret key
 - P_b: public key
 - (note: P_b = v_b G)

Signcryption on EC-- 1st example

- **Signcrypt by Alice**
 - k = hash(v P_b)
 - where \(v \in \{1, \ldots, q - 1\} \)
 - k \(\rightarrow \) k_1, k_2
 - r = KH_{k_2}(m)
 - s = \frac{v}{r + v_a} \mod q
 - c = E_{k_1}(m)
 - **output** (c, r, s)

- **Unsigncrypt by Bob**
 - u = s v_b \mod q
 - k = hash(u P_a + ur G)
 - k \(\rightarrow \) k_1, k_2
 - m = D_{k_1}(c)
 - **output**
 - \(m \) if \(r = KH_{k_2}(m) \)
 - "invalid" if \(r \neq KH_{k_2}(m) \)
Signcryption on EC—2nd example

- **Signcrypt by Alice**
 - $k = \text{hash}(v P_b)$
 - *where* $v \in \mathbb{F}_q \{1, \ldots, q-1\}$
 - $k \leftarrow k_1, k_2$
 - $r = KH_{k_2}(m)$
 - $s = \frac{v}{1 + v a r} \mod q$
 - $c = E_{k_1}(m)$
 - output (c, r, s)

- **Unsigncrypt by Bob**
 - $u = s v_b \mod q$
 - $k = \text{hash}(u G + u r P_a)$
 - $k \leftarrow k_1, k_2$
 - $m = D_{k_1}(c)$
 - output
 - m if $r = KH_{k_2}(m)$
 - "invalid" if $r \neq KH_{k_2}(m)$

EC Signcryption v.s. EC Signature-then-Encryption

- **Reduction in comp. cost**
 \[
 \frac{5.17 - 2.17}{5.17} = 58\%
 \]

- **Reduction in comm. overhead**
 \[
 \frac{|\text{hash}(\cdot)| + 2|q| - (|KH(\cdot) + |q|)}{|\text{hash}(\cdot)| + 2|q|} = \frac{|q|}{\frac{1}{2}|q| + 2|q|} = 40\%
 \]